Accumulation of glycerophosphocholine (GPC) by renal cells: osmotic regulation of GPC:choline phosphodiesterase.

نویسندگان

  • K Zablocki
  • S P Miller
  • A Garcia-Perez
  • M B Burg
چکیده

Although GPC has long been recognized as a degradation product of phosphatidylcholine, only recently is there wide appreciation of its role as a compatible and counteracting osmolyte that protects cells from osmotic stress. GPC is osmotically regulated in renal cells. Its level varies directly with extracellular osmolality. Cells in the kidney medulla in vivo and in renal epithelial cell cultures (MDCK) accumulate large amounts of GPC when exposed to high concentrations of NaCl and urea. Osmotic regulation of GPC requires choline in the medium, presumably as a precursor for synthesis of GPC. Choline transport into the cells, however, is not osmoregulated. The purpose of the present studies was to use MDCK cell cultures as a defined model to distinguish whether osmotically induced accumulation of GPC results from increased GPC synthesis or decreased GPC disappearance. The rate of incorporation of 14C from [14C]choline into GPC, the steady-state GPC synthesis rate, and the activity of phospholipase A2 (which can catalyze a step in the synthesis of GPC from phosphatidylcholine) are not increased by high NaCl and urea. In fact all are decreased by approximately one-third. Therefore, we find no evidence that high NaCl and urea increases the GPC synthesis rate. On the other hand, the rate coefficient for cellular GPC disappearance and the activity of GPC:choline phosphodiesterase (EC 3.1.4.2), which catalyzes degradation of GPC, are decreased by approximately two-thirds by high NaCl and urea. We conclude that high NaCl and urea increase the level of GPC by inhibiting its enzymatic degradation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Silencing GDPD5, a novel anticancer target, increases glycerophosphocholine in human breast cancer cells

Introduction: Phosphocholine (PC) and total choline-containing compounds (tCho = glycerophosphocholine (GPC) + PC + free choline (Cho)) are elevated in human breast cancers, as demonstrated by numerous H magnetic resonance (MR) spectroscopy (MRS) studies [1, 2]. A switch from high GPC and low PC to low GPC and high PC characterizes the choline metabolite profile of breast [3] and ovarian [4] ca...

متن کامل

Effects of glycine betaine and glycerophosphocholine on thermal stability of ribonuclease.

Urea in renal medullas is sufficiently high to perturb macromolecules, yet the cells survive and function. The counteracting osmolytes hypothesis holds that methylamines, such as glycine betaine (betaine) and glycerophosphocholine (GPC) in renal medullas, stabilize macromolecules and oppose the effects of urea. Although betaine counteracts effects of urea on macromolecules in vitro and protects...

متن کامل

Structure and biological function of ENPP6, a choline-specific glycerophosphodiester-phosphodiesterase

Choline is an essential nutrient for all living cells and is produced extracellularly by sequential degradation of phosphatidylcholine (PC). However, little is known about how choline is produced extracellularly. Here, we report that ENPP6, a choline-specific phosphodiesterase, hydrolyzes glycerophosphocholine (GPC), a degradation product of PC, as a physiological substrate and participates in ...

متن کامل

GlyceroPhosphoCholine (GPC), Mind-Body Nutrient for Active Living And Healthy Aging

Glycerophosphocholine (pronounced gli-sero-fos-fo-ko-lean) or GPC is a small nutrient molecule with a large place in the scheme of life. Its centrality to human life is suggested by its abundance in mother’s milk.1 GPC supports multiple facets of homeostasis—the body’s maintenance of the conditions necessary for life. Its natural presence in all the body’s cells makes it an orthomolecule (molec...

متن کامل

Acylation of 1-alkenyl-glycerophosphocholine and 1-acyl-glycerophosphocholine in guinea pig heart.

The deacylation-reacylation process has been shown to be an important pathway for phospholipids to attain the desired acyl groups at the C-2 position. The acylation of 1-acyl-glycerophosphocholine (-GPC) in mammalian hearts has been well documented, but the acylation of 1-alkenyl-GPC has not been described. In this paper, we demonstrate the presence of acyl-CoA: 1-alkenyl-GPC acyltransferase fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 88 17  شماره 

صفحات  -

تاریخ انتشار 1991